
Neural Networks (2013/14)
Example exam, December 2013

In the final exam, four problems are to be solved within 3 hours. The use of
supporting material (books, notes, calculators) is not allowed. You can
achieve up 9 points, in total. The exam grade will be ”1.0 + your number of
points”.
Important hints: never just answer a question with ”Yes” or ”No”, always give
arguments for your conclusion. Be as precise as possible and use math where it
makes sense.

1) Model neurons and networks

a) Consider a single neuron of the McCulloch Pitts type. Define precisely
how its state of activity is determined from the neurons it is connected
to (its neighbors). Explain why a positive weight can be interpreted as
representing an excitatory synapse.

b) Consider a Hopfield model consisting of N McCulloch Pitts type of neurons
with activities Sj(t) ∈ {−1,+1} (j = 1, 2, . . . , N). Write down an update
equation that specifies Si(t+ 1) as a function of the neural activities Sj(t)
in the previous time step.

c) How is a set of patterns {ξµ ∈ IRN} (µ = 1, 2, . . . , P ) stored in the sim-
ple Hopfield model? Explain in words, how it can work as an associative
memory.

2) Perceptron storage problem
Consider a set of data ID = {ξµ, Sµ}Pµ=1 where ξµ ∈ IRN and Sµ ∈ {+1,−1}.
You can assume that the data is homogeneously linearly separable.

a) Define the stability κ(w) of a perceptron solution w with respect to the
given set of data ID. Give a geometric interpretation and provide a sketch
of an illustration. Explain in words why κ(w) quantifies the stability of the
perceptron output with respect to noise.

b) Assume you have found two different solutions w(1) and w(2) of the percep-
tron storage problem for data set ID. Assume furthermore that w(1) can be
written as a linear combination

w(1) =
P∑

µ=1

xµ ξµ Sµ with xµ ∈ IR,

whereas the difference vector w(2) − w(1) is orthogonal to all the vectors
ξµ ∈ ID.

Consider the stabilities of the competing solutions and prove (give precise
mathematical arguments) that κ(w(1)) ≥ κ(w(2)) holds true. What does
this result imply for the perceptron of optimal stability and potential train-
ing algorithms?
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3) Learning a linearly separable rule
Here we consider linearly separable data ID = {ξµ, Sµ

R}
P

µ=1 where noise free labels

S
µ
R = sign[w∗ · ξµ] are provided by a teacher vector w∗ ∈ IRN with |w∗| = 1.

a) Define and explain the term version space precisely in this context, provide
a mathematical definition as a set of vectors and also a simplifying graphical
illustration. Give a brief argument why one can expect the perceptron of
maximum stability to display good generalization behavior.

b) Define and explain the (Rosenblatt) Perceptron algorithm for a given set
of examples ID. Be precise, for instance by writing it in a few lines of
pseudocode. Also include a stopping criterion.

c) While experimenting with the Rosenblatt perceptron (with initialw(0) = 0)
in the practicals, your partner has a brilliant idea: the use of a larger
learning rate. His/her argument: updating w by Hebbian terms of the
form η ξµ Sµ with a large η > 1 should give (I) faster convergence and (II)
a better perceptron vector. Are you convinced? Give precise arguments for
yor answer!

Note: The following will be treated in January, consider it as an outlook . . .

4) Learning by gradient descent
Consider a feed-forward continuous neural network with an N -dim. input layer
and one very simple, linear unit with continuous output

σ(ξ) = w · ξ ∈ IR

Here, ξ denotes an N -dim. input vector and w is adaptive weight vector.

a) Given a set of training examples, i.e. inputs ξµ with continuous labels
τµ ∈ IR, consider the quadratic error measure

E(w) =
1

2

P∑

µ=1

(σ(ξµ)− τµ)2 .

as a cost function for training Derive a gradient descent learning step for
the adaptive weights with respect to the cost function E.

b) What are the necessary conditions for a weight vector w∗ to be a local min-
imum of E? You don’t have to discuss sufficient conditions here. Assume
some w∗ does indeed satisfy the necessary conditions, but it is not a local
minimum. What else could w∗ correspond to?

c) Discuss qualitatively (in words) the role of the step size or learning rate η

in the gradient descent algorithm. What can happen if η is (too) small or
(too) large, respectively?
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